Agentification of Markov model-based segmentation: Application to magnetic resonance brain scans
نویسندگان
چکیده
OBJECTIVE Markov random field (MRF) models have been traditionally applied to the task of robust-to-noise image segmentation. Most approaches estimate MRF parameters on the whole image via a global expectation-maximization (EM) procedure. The resulting estimated parameters are likely to be uncharacteristic of local image features. Instead, we propose to distribute a set of local MRF models within a multiagent framework. MATERIALS AND METHODS Local segmentation agents estimate local MRF models via local EM procedures and cooperate to ensure a global consistency of local models. We demonstrate different types of cooperations between agents that lead to additional levels of regularization compared to the standard label regularization provided by MRF. Embedding Markovian EM procedures into a multiagent paradigm shows interesting properties that are illustrated on magnetic resonance (MR) brain scan segmentation. RESULTS A cooperative tissue and subcortical structure segmentation approach is designed with such a framework, where both models mutually improve. Several experiments are reported and illustrate the working of Markovian EM agents. The evaluation of MR brain scan segmentation was performed using both phantoms and real 3T brain scans. It showed a robustness to intensity non-uniformity and noise, together with a low computational time. CONCLUSION Based on these experiments MRF agent-based approach appears to be a very promising new tool for complex image segmentation.
منابع مشابه
Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملMRF Agent Based Segmentation: Application to MRI Brain Scans
The Markov Random Field (MRF) probabilistic framework is classically introduced for a robust segmentation of Magnetic Resonance Imaging (MRI) brain scans. Most MRF approaches handle tissues segmentation via global model estimation. Structure segmentation is then carried out as a separate task. We propose in this paper to consider MRF segmentation of tissues and structures as two local and coope...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 46 1 شماره
صفحات -
تاریخ انتشار 2009